在这里插入图片描述在这里插入图片描述

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import cv2
import numpy as np

# 将图片安装数组形式排列
def stackImages(scale, imgArray):
rows = len(imgArray)
cols = len(imgArray[0])
rowsAvailable = isinstance(imgArray[0], list)
width = imgArray[0][0].shape[1]
height = imgArray[0][0].shape[0]
if rowsAvailable:
for x in range(0, rows):
for y in range(0, cols):
if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:
imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
else:
imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),
None, scale, scale)
if len(imgArray[x][y].shape) == 2: imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)
imageBlank = np.zeros((height, width, 3), np.uint8)
hor = [imageBlank] * rows
hor_con = [imageBlank] * rows
for x in range(0, rows):
hor[x] = np.hstack(imgArray[x])
ver = np.vstack(hor)
else:
for x in range(0, rows):
if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
else:
imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)
if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
hor = np.hstack(imgArray)
ver = hor
return ver


def getContours(img):
contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
for cnt in contours:
area = cv2.contourArea(cnt)
print(area)
if area > 500:
cv2.drawContours(imgContour, cnt, -1, (255, 0, 0), 3)
peri = cv2.arcLength(cnt, True)
# print(peri)
# 分辨率,越高识别和肉眼差不多,相当于假如有一个三角形有一个角有点弧度的话肉眼可以看出但是机器不一定,就是给其一个模糊程度。
approx = cv2.approxPolyDP(cnt, 0.1 * peri, True)
# 点的个数
print(len(approx))
objCor = len(approx)
x, y, w, h = cv2.boundingRect(approx)

if objCor == 3:
objectType = "Tri"
elif objCor == 4:
aspRatio = w / float(h)
if aspRatio > 0.98 and aspRatio < 1.03:
objectType = "Square"
else:
objectType = "Rectangle"
elif objCor > 4:
objectType = "Circles"
else:
objectType = "None"

cv2.rectangle(imgContour, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(imgContour, objectType,
(x + (w // 2) - 10, y + (h // 2) - 10), cv2.FONT_HERSHEY_COMPLEX, 0.7,
(0, 255, 255), 2)


print("轮廓检查")
img = cv2.imread('E:/code/py/opencv/shapes.png')
imgContour = img.copy()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (7, 7), 1)
canny = cv2.Canny(blur, 20, 100)
getContours(canny)
blank = np.zeros_like(img)
imgstack = stackImages(0.6, ([img, gray, blur],
[canny, imgContour, blank]))

cv2.imshow("stack", imgstack)
cv2.waitKey(0)

首先去数点的个数,就是角吧。然后在判断角度等就可以判断一些基本的图像的形状了。